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Wave packet scattering from time-varying potential barriers in one
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We discuss a solution of the time-dependent Schr€odinger equation that incorporates absorbing

boundary conditions and a method for extracting the reflection and transmission probabilities for wave

packets interacting with time-dependent potential barriers. We apply the method to a rectangular

barrier that moves with constant velocity, an oscillating rectangular barrier, a locally periodic barrier

with an amplitude modulated by a traveling wave, and a locally periodic potential with an amplitude

modulated by a standing wave. Visualizations of the reflection phenomena are presented with an

emphasis on understanding these systems from their dynamics. Applications to non-stationary neutron

optics experiments are discussed briefly. VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4833557]

I. INTRODUCTION

The reflection and transmission of matter waves from
static potential barriers have been studied extensively using
theoretical, numerical, and experimental techniques.
Moreover, computer visualizations of wave packet scattering
from barriers and wells have been used to gain insight into
transmission and reflection phenomena ever since the paper
by Goldberg, Schey, and Schwartz.1 Nevertheless, visualiz-
ing wave packet scattering from time-varying potential
barriers has not featured as prominently in the literature.
Yet a numerical approach in which the time-dependent
Schr€odinger equation (TDSE) is solved for wave packets
incident on time-varying potential barriers can offer just as
powerful a tool in gaining understanding of scattering in
non-stationary systems where analytical solutions are either
extremely difficult or impossible to obtain. In 1982, Haavig
and Reifenberger investigated the effects of modulating the
height of a rectangular barrier on the transmission and reflec-
tion of a wave packet.2 They used a variant of the algorithm
used in Ref. 1 to solve the TDSE numerically and generated
animated sequences of the time-development of the scattered
wave packets. They observed that reflected wave packets
showed multiple peaks that moved at different velocities, a
result that they described in terms of multi-phonon exchange.
One of their goals was to use their results to help design
experiments to measure the effects of the dynamic image
potential for charged particles. More recently numerical
approaches have been used to examine the effect of barrier
oscillation on resonant tunneling and particle capture by a
moving potential.3,4

There are many practical problems that involve solutions
to the one-dimensional Schr€odinger equation. For example,
such solutions are applicable to neutron reflectometry

measurements.5–7 The specular reflection of neutrons from a
material composed of multiple layers provides detailed infor-
mation on the structure and composition of the depth profile
of that material at the atomic scale. Because the direction
of the momentum transfer in this geometry is normal to
the material’s surface, solutions to the one-dimensional
Schr€odinger equation are frequently used to describe many
neutron reflectometry experiments.

Numerous non-stationary phenomena due to one-
dimensional potentials have been explored using neutrons8–10

and even atoms.11 It is not just fundamental measurements
but often the measurement technique itself that depends on
non-stationary phenomena. The operation of a high resolution
neutron backscattering spectrometer depends on harmonically
oscillating crystals that reflect neutrons of different energies
based on the Doppler effect for matter waves. Given the ubiq-
uity of non-stationary quantum phenomena and the relative
scarcity of examples appropriate for the classroom, this paper
outlines an approach that combines several computational
methods that make possible straightforward and fast visual-
ization of time-dependent wave packet scattering from time-
varying potentials.

In Sec. II, we review the well-known result of scattering
from a rectangular potential, specifically for plane waves and
Gaussian wave packets. This result introduces the methodol-
ogy we will use to calculate the reflectivity of potential bar-
riers throughout this paper. The method is then applied to
wave packets scattering from a rectangular barrier moving
with constant velocity. The reflectivity is compared to the
expected reflectivity based on Galilean invariance. The
dynamics are next calculated for an oscillating rectangular
barrier. The corresponding reflectivity is compared to that of
the static rectangular barrier and the differences are dis-
cussed in terms of inelastic scattering. In Sec. III, we
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examine scattering from a potential barrier whose amplitude
supports a traveling wave as well as a standing wave. The
reflectivity for both cases can be understood in terms of the
same simple model and is discussed in terms of both a neu-
tron scattering measurement from surface acoustic waves as
well as a neutron Doppler monochromator used in a class of
high-resolution neutron scattering instruments. We summa-
rize our approach and results in Sec. IV.

II. REFLECTION FROM A RECTANGULAR

BARRIER

A. Static barrier

The reflection of a plane wave from a rectangular barrier
of width w, height V0, and location xV has been treated in
many textbooks on quantum mechanics,12,13 and thus we
simply present the result. The potential centered at xV is
given by V(x� xV), where

VðnÞ ¼ V0 �w=2 � n < w=2

0 otherwise:

�
(1)

For a plane wave with wave vector k0 incident on this barrier
the reflectivity is given by14

Rðk0Þ ¼ 1� 1þ 1

4

k0

k0

� k0

k0

� �2

sin2ðk0wÞ

" #�1

; (2)

where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � 2V0

p
. We use units such that �h ¼ m ¼ 1 in

Eq. (2) and in the remainder of the paper.
Extending the treatment to find the reflectivity from a

wave packet rather than a plane wave is straightforward.15

The wave packet is a Gaussian with the usual functional
form

wðx; t ¼ 0; x0Þ ¼ ðpr2
xÞ
�1=4 e�ðx�x0Þ2=2r2

x eik0ðx�x0Þ: (3)

In Eq. (3), k0 is the central wavenumber of the momentum
distribution Pðk; k0Þ ¼ j/ðk; t ¼ 0; k0Þj2, where

/ðk; t ¼ 0; k0Þ ¼
r2

x

p

� � 1=4

e�
1
2
r2

xðk�k0Þ2 : (4)

The reflection of a Gaussian wave packet is thus found from

Rðk0Þ ¼
ð

dk RðkÞPðk; k0Þ; (5)

where R(k) is given by Eq. (2).
For time-varying potentials it is not usually possible to use

Eq. (5) to evaluate the reflectivity.16 Our approach is to per-
form a set of numerical computations in which a series of
wave packets of different central wavenumber k0, and con-
stant width rx are launched at the time-dependent potential
and determine the amount reflected. Before doing this calcu-
lation with time-dependent potentials, we validate this
approach for the simple case in which the barrier does not
move and where we can use Eq. (5) to compare to the numer-
ical experiments.

Numerical solutions of the dimensionless TDSE were
performed using a variation of Visscher’s staggered step
algorithm,17 which has also been shown to be stable for
time-dependent potentials.18 We tested the accuracy of the

algorithm for time-varying potentials by testing the time-
invariance property of the wave function.19 Although we
solve the dimensionless TDSE, interested readers can consult
Appendix A for details on scaling the results to physical
units. The advantages of the Visscher algorithm are that it is
explicit, fast, accurate (unitary), and stable, all desirable
traits when determining the reflectivity. Unfortunately, the
algorithm suffers from one weakness: the wave function at
the domain boundaries is zero. Thus waves that reach the
boundaries are reflected. We could still perform these calcu-
lations effectively with these boundary conditions by placing
the potential in the center of a very large integration domain.
However, this procedure would result in very long integra-
tion times. Instead of a large integration domain we chose
absorbing boundary conditions and a small integration
domain.

The geometry of these computations is illustrated in
Fig. 1. To determine the reflectivity accurately, it is impor-
tant that the wave packets are not reflected at the boundaries.
If boundary-reflected waves are present, they could add to
the wave reflected from the barrier, thus erroneously increas-
ing the reflectivity. To mitigate this effect, the Visscher algo-
rithm was augmented to include absorbing boundary
conditions, ensuring that transmitted waves that reach the
right boundary are not reflected.20 The absorbing boundary
conditions have been combined with other methods of solv-
ing the TDSE and applied to other problems of interest.21,22

This implementation of Visscher’s algorithm with absorbing
boundary conditions is summarized in Appendix B.
Interested readers are referred to Visscher and Shibata’s
papers for details on its development as well as the stability
of this numerical approach. Suggested problems are pro-
posed in Sec. V to guide readers through some of the steps in
the algorithms.

The reflectivity and transmission probabilities are deter-
mined by recording the reflected and transmitted probability
current at x¼ xr and x¼ xt, respectively (see Fig. 1). The
transmission probability is calculated by integrating the
probability current j(x,t) over time at a single position
(x¼ xt) just beyond the barrier. This integral must be per-
formed over a duration spanning the entire scattering event
(that is, waiting until the probability current has vanished
at xt). A derivation of this result is provided in Appendix C.
The result is

Tðk0Þ ¼
ðtfinal

t¼0

dt0 jtransðk0; t
0Þ; (6)

Fig. 1. Geometry used in the one-dimensional wave packet scattering events.

The scattered/reflected and transmitted probability currents are recorded at

xr and xt, respectively. The numerical integration of the TDSE is carried out

over the domain 0 � x � L with absorbing boundaries at x¼ 0 and x¼L.

143 Am. J. Phys., Vol. 82, No. 2, February 2014 Robert M. Dimeo 143

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.6.223.64 On: Wed, 22 Jan 2014 21:05:57



where jtransðk0; tÞ ¼ jðx ¼ xt; t; k0Þ and the probability current
is given by the usual definition:

jðx; tÞ ¼ 1

2i
w�
@w
@x
� @w

�

@x
w

� �
: (7)

The advantage of using this method to calculate the trans-
mission probability is that we need to sum only the probabil-
ity current at a single point x¼ xt to find the total probability
which is located in the interval xt � x <1. With absorbing
boundary conditions, Eq. (6) allows us to calculate the trans-
mission probability without requiring a large domain. The
other approach is to integrate the probability of the reflected
wave packet. However, if the reflected wave packet has a
large spatial extent and our domain is limited (that is, the
reflected wave packet probability density extends over a
larger range than the domain), this method will fail. Our
approach allows us to simply add the contribution at a single
point until such time that the current has ceased to contribute
to the integral. This approach is similar to the time-of-flight
technique, common to particle scattering techniques, used to
record the time at which an event occurs in a detector.

To find the reflectivity R(k0) we can follow the same steps
but integrate over jref (k0,t), or we can simply use Eq. (6) and
calculate R(k0)¼ 1� T(k0).

To validate our approach, a series of 200 wave packets of
width rx ¼ 0:05 and increasing central wavenumber span-
ning 250 � k0 � 850 in equally spaced increments were
scattered from a static rectangular barrier of width w¼ 0.02
and height V0¼ 4.5� 104. The transmitted and reflected cur-
rents were determined at xt¼ 0.23 and xr¼�0.025, respec-
tively. These points for xt and xr were selected to provide
accurate results with a relatively small domain. A spatial
grid of 2000 points was defined over �0:3 � x � 0:25 and a

time step of 10�8 was used for each update of the wavefunc-
tion. The number of time steps for each wave packet’s evolu-
tion depends on the value of k0, but generally the wave
packet evolved for 5 times the time it would take for the cen-
ter of the wave packet to reach the center of the potential.
Inspection of the scattering events in space-time verified that
this was sufficient to capture the entire event. Furthermore,
the quantity Rðk0Þ þ Tðk0Þ, as determined by integrating
jrefðk0; tÞ and jtransðk0; tÞ, differed from unity by 10�7, which
is three orders of magnitude smaller than the lowest reflectiv-
ity obtained using this method.

The current at xr; jrefðk0; tÞ ¼ jðx ¼ xr; t; k0Þ is shown in
Fig. 2. Note the structure in the reflected beam, notably the
“holes” located at discrete points in (k0,t) space. These are
interference effects. We perform the integral

Rðk0Þ ¼ �
ðtfinal

t¼0

dt0 jrefðk0; t
0Þ; (8)

to find the reflectivity and, as shown by the circles in Fig. 2,
we find excellent agreement with Eq. (5). Clearly the “holes”
seen in jrefðk0; tÞ correspond to the deep dips in R(k0).

B. Barrier moving with constant speed

A rectangular barrier moving with speed vb can be repre-
sented by Vðx� xVðtÞÞ, where VðnÞ is given in Eq. (1) and
xVðtÞ ¼ xV6vbt. For a rectangular barrier that moves at con-
stant speed, Galilean invariance requires that the reflectivity
is a shifted version of the static reflectivity: Rðk06vbÞ.10 To
test this hypothesis, we recorded the reflection probability
for a sequence of 200 wave packets when the barrier moved
toward the wave packet with vb¼�30. The results of the

Fig. 2. Image plot of the magnitude of the probability current (log scale) and

the resulting reflectivity profile for a series of 200 wave packets with width

rx ¼ 0:05 as a function of the central wavenumber and the time of arrival at

xr scattered from a stationary rectangular barrier of width w¼ 0.02 and

height V0¼ 4.5� 104. The reflected current was recorded at xr¼�0.025.

The reflection probability obtained by integrating jref (k0,t) is shown by the

circle symbols. The dashed line is the reflectivity of a plane wave with wave

vector k0 from V(x), given by Eq. (2). The solid line is the reflectivity calcu-

lated using Eq. (5) and the Gaussian wave packet with rx ¼ 0:05.

Fig. 3. Image plot of the probability current (log scale) for a wave packet

with rx ¼ 0:05 as a function of the central wavenumber and the time of

arrival at xr reflected from a rectangular barrier of width w¼ 0.02 and height

V0¼ 4.5� 104 moving with a constant speed toward the wave packet

(vb¼�30). The resulting reflectivity from the probability current is shown

by the circles. The dashed line represents the reflectivity from the static

barrier. The solid line through the circles is the static reflectivity shifted

uniformly by �vb. The square symbols denote the reflectivity from a barrier

moving away from the wave packet with a constant speed. The solid line

through the square symbols is the static reflectivity shifted by þvb.
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computations are shown in Fig. 3. It is clear that the main
features of the reflected probability current observed in the
static case are present in the constant-velocity case, includ-
ing the well-defined holes at discrete points in (k0,t). The
reflectivity obtained from wave packet scattering agrees with
the shifted static barrier reflectivity R(k0� vb). The reflectiv-
ity for 80 wave packets scattered from a rectangular barrier
moving away from the wave packet at constant speed
(vb¼þ30) is also shown in Fig. 3. Again, the agreement
with the shifted reflectivity, R(k0þ vb), is excellent.

C. Oscillating barrier

What is the effect on the reflected wave packet if the bar-
rier oscillates along the x-axis? To explore this question, the
methodology discussed in Sec. II A was used with the time-
dependent potential V(x� xV(t)), where VðnÞ is given in
Eq. (1) and xVðtÞ ¼ xV þ dsinxt. Here, we use a value of d
that is small compared to the width w of the potential.

We use the same approach and examine the reflected and
transmitted probability current for a series of 200 wave pack-
ets with wavenumbers spanning 250 � k0 � 850 scattered
from the oscillating barrier. The barrier parameters are the
same as in the static case, but the barrier oscillates with the
angular frequency x ¼ 69167 and an amplitude
d ¼ 1:25� 10�3. The reflected probability current is shown
in Fig. 4 with the resulting reflectivity plotted on top. The
result for a stationary barrier is shown for comparison.
The reflectivities agree only at the lowest wavenumbers
ðk0 < 330Þ and start to deviate from each other significantly
beyond that. The ripples seen in the static reflectivity are
smoothed out, the peaks broaden, and the peaks become out
of phase with those in the static case for k ’ 550. Why does
R(k0) for the oscillating barrier differ in this manner from
that of the static barrier?

The probability current for the reflected wave packet pro-
vides some clues. By comparing jrefðk0; tÞ in Figs. 2 and 4,
we see that there is additional structure for the oscillating
case that is not present in the static case. One of the most
prominent features in Fig. 4 is the band of reflected current
that persists for long times near k0¼ 380. There are similar
but weaker bands of current near k0¼ 550 and k0¼ 650.
These reflected wave packets take longer to move past xr and
are obviously moving slower than a free wave packet of the
same central incident wavenumber. Thus, these bands repre-
sent wave packet scattering events in which some significant
components of the wave packet have lost energy in their
interaction with the moving barrier.

The quantity jrefðk0; tÞ shows streaks and ripples as well as
the holes seen in Fig. 4. The addition of these streaks has the
effect of smoothing out the deep dips in R(k0) and smoothing
out the curve in general.

If we compare the evolution of the probability densities for
the static and oscillating barriers, as shown in Figs. 5 and 6,
respectively, we can see evidence of inelastic scattering on
the final reflected wave packet. When the wave packet
reflects from the stationary barrier, the final wave packet
configuration has a similar, smooth Gaussian shape com-
pared to its initial configuration. While the wave packet
interacts with the barrier, much structure appears due to the
interference of the reflected and incident wave components.

Fig. 4. Image plot of the probability current (log scale) for a wave packet

with width rx ¼ 0:05 as a function of k0 and time of arrival at xr, reflected

from a rectangular barrier of width w¼ 0.02 and height V0¼ 4.5� 104 oscil-

lating along the x-axis with an amplitude of d ¼ 1:25� 10�3 and a fre-

quency of x ¼ 69167. The resulting reflectivity from the probability current

is shown by the circle symbols. The plane wave reflectivity and Gaussian

wave packet reflectivity from a static barrier are shown in the dashed and

solid lines, respectively.

Fig. 5. Evolution of the probability density jwðx; tÞj2 for a wave packet reflec-

ting from a static barrier; for this event, k0¼ 400, V0¼ 4.5� 104, w¼ 0.02,

and rx ¼ 0:05. The absorbing boundary at x¼ 0.25 is shown by the vertical

line in each frame. The time step in the integration is shown at the top of each

frame (enhanced online) [URL: http://dx.doi.org/10.1119/1.4833557.1].
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Only after the wave packet has completely ceased interact-
ing with the barrier does it regain its smooth, Gaussian-like
shape. This well-known result has been previously
observed.1 In contrast, there is much structure in the packet
reflected from the oscillating barrier after it ceases interact-
ing with the barrier. The oscillating barrier acts like a time-
varying shutter in which a series of wave packets of differ-
ent speeds are reflected after interacting with the barrier.
This sequence of wave packets may overlap, resulting in a
wiggly envelope as can be seen in the last frame of the
sequence in Fig. 6.

In addition to the visualizations in position space, which
show that the wave packets have different velocity compo-
nents after reflection, Fig. 7 shows that the momentum distri-
bution of the scattered wave packet has a clear set of
well-resolved peaks. In addition to the expected elastically
scattered wave packet at k0 ’ �400, there are additional peaks
on both sides of the elastic peak. We can explain these peaks
in terms of the exchange of vibrational excitations (multi-pho-
non exchanges) between the wave packet and the barrier. If we
treat the oscillating barrier as a quantum simple harmonic os-
cillator, then the final energy of the wave packet is given by

En ¼ E0 þ nx; (9)

where E0 ¼ k2
0=2 and n ¼ 0;61;62;…. For n > 0 ðn < 0Þ

the wave packet absorbs (emits) a phonon. We can estimate

the location of the peaks in the momentum distribution of
the reflected wave packet using

kn ¼ �
ffiffiffiffiffiffiffiffi
2En

p
; (10)

where we have chosen the minus sign, which corresponds to
a reflected wave packet.

To assess the plausibility of this simple multi-phonon
model, we look at the location of the peaks in the momentum
distribution in Fig. 7 and calculate the location of these
peaks using Eq. (10) with k0¼ 400 and x ¼ 69167. The
peak associated with a zero-phonon process is the elastic
peak located at k¼�400, while the peaks associated with
phonon absorption are at k ¼ f�546;�661;�758g, as
denoted by the vertical lines in Fig. 7. The peak at k¼�147
is a one-phonon emission peak, which is allowed because
the incident wave packet’s energy exceeds that of one of the
harmonic oscillator states of the barrier; that is, k2

0=2 > x.
Here k2

0=2 ¼ 8� 104 and x ¼ 69167, and hence the condi-
tion is clearly satisfied. As seen in Fig. 7, the agreement
between the actual peak locations and the predictions of this
simple model is good. Based on the appearance of these
additional discrete peaks in the momentum distribution, we
conclude that there are inelastic processes involved in the
interaction of the barrier and the wave packet, thus contri-
buting to the modification of the reflectivity curve shown in
Fig. 4.

The conclusion that phonons are exchanged with the
potential barrier is consistent with the measurements in
which very cold neutrons (k ¼ 24 Å) are reflected from
an oscillating mirror.9 This system was modeled as a one-
dimensional step potential whose boundary oscillated in
time. It was found that the reflected neutron energy spectra
were quantized corresponding to the oscillation of the
reflecting disk, a result that is comparable to the analytical
and numerical results of Ref. 2. In one of the measurements
of Ref. 9 the oscillation frequency was 693 kHz and the scat-
tered neutron spectra displayed peaks at 62.8 neV, consist-
ent with Eq. (9). Additional satellite peaks appeared in their
data as the amplitude of the mirror oscillation increased.
This result is consistent with our computations, but is not
discussed here.

Fig. 6. Evolution of the probability density jwðx; tÞj2 for a wave packet

reflecting from an oscillating barrier with x ¼ 69167 and d ¼ 1:25� 10�3.

All other parameters are the same as in Fig. 5 (enhanced online) [URL:

http://dx.doi.org/10.1119/1.4833557.2].

Fig. 7. The momentum distribution of a wave packet after it has reflected

from an oscillating barrier; for this event, k0¼ 400, V0¼ 4.5� 104,

d ¼ 1:25� 10�3; w ¼ 0:02; x ¼ 69167, and rx ¼ 0:05. The annotations A

and E preceded by a number refer to the number of phonons that the wave

packet has absorbed or emitted, respectively. The vertical lines correspond

to the peak locations predicted by the simple model described in the text.
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III. SCATTERING FROM A TRAVELING WAVE

A. Static locally periodic potential

The reflectivity and transmission of locally periodic poten-
tials have been studied analytically and numerically.23–25

This class of potentials is characterized by a small number of
repeating units. One of the reasons for examining the trans-
mission and reflection properties of such potentials, in con-
trast to a periodic potential which is infinite in extent, is that
it can be an efficient means to access numerically the precur-
sors of the properties of periodic potentials, such as band
structure.24 Also, the periodic time-variation of these poten-
tial may offer additional insight into non-stationary phenom-
ena. The prominent reflection peaks present in periodic
potentials can be used as a reference feature to examine the
effects of time-dependence.

We consider a localized sinusoidal potential, Vðx� xVÞ, in
which VðnÞ has the form:

VðnÞ ¼ V0 sinðQlp nÞ �w=2 � n < w=2

0 otherwise;

�
(11)

where the one-dimensional reciprocal lattice vector Qlp

determines the spatial periodicity via 2p=Qlp, and we choose
a width corresponding to an integral number of spatial oscil-
lation periods w ¼ 11ð2p=QlpÞ. For a barrier with this spatial
periodicity, kinematic considerations lead to the Bragg
reflection condition in three dimensions: Qlp ¼ 2k0 sin h.
In one dimension, this condition corresponds to reflection
for 2h ¼ p. Thus, we expect a strong reflection when
k0 ¼ Qlp=2.

We used our wave packet scattering approach to find the
reflectivity shown in Fig. 8. The plane wave reflectivity
of V(x) was determined using well-known matrix meth-
ods.5,7,14 This result was then used with Eq. (5) to deter-
mine the theoretical wave packet reflectivity. The
agreement of the reflectivity from the wave packet experi-
ments and the theoretical result is excellent over the wave-
number range probed. As expected, the first peak in the
reflectivity is near k0¼ 600.26 The width of the Bragg peak

near k0¼ 600 is broad by design so that the finite width of
the wave packet does not smooth out this prominent reflec-
tion peak.

B. Traveling wave potential

We now consider the dynamical version of Eq. (11) in
which the peaks and troughs of the potential move with a
speed vb, while the extent of the potential remains fixed in
space. We choose the sign of vb so that the traveling wave
moves either to the left vb < 0 or to the right vb > 0. The
modified expression for the potential centered on xV is given
by V(x� xV), with

VðnÞ ¼
V0 sinðQlpðn� vbtÞÞ �w=2 � n < w=2

0 otherwise;

(

(12)

and where vb is the speed of the traveling wave. The results
of the traveling wave moving parallel ðvwp k vbÞ and anti-
parallel ðvwp k �vbÞ to the incident wave packet are shown
in Fig. 9. The difference between these two cases and the
static reflectivity is clear. The reflection peaks for the parallel
and anti-parallel cases are equally spaced on either side of
the static peak and are Doppler-shifted.

It can be shown that a matter wave that is Bragg reflected
in backscattering geometry from a moving periodic lattice
has its energy shifted from the static case E0 by an amount

DE ¼ E0½2ðvb=vwpÞ þ ðvb=vwpÞ2�; (13)

where the wave packet’s central velocity vwp ¼ �hk0=m. Note
that Eq. (13) holds for the parallel case, and the sign of vb

must be changed for the anti-parallel case.
Equation (13) is not typically covered in solid state

physics courses. However, the concepts and mathematics are
sufficiently straightforward so that it can be presented to
upper-division undergraduate students. A detailed presenta-
tion and derivation are given in Appendix D.

For the parallel case we convert Eq. (13) to an expression
in terms of the wavenumber,

Fig. 8. Reflectivity of the wave packet from a static locally periodic poten-

tial; the parameters are rx ¼ 0:05; V0 ¼ 5� 103, and Qlp ¼ 1200. The solid

line is the result of a calculation of the plane wave reflectivity integrated

over the wave packet via Eq. (5). The circles are the result of the numerical

reflectivity simulations described in the text.

Fig. 9. Reflectivity of the wave packet from a traveling wave in a locally

periodic potential; the potential parameters are Qlp ¼ 1200; V0 ¼ 5� 103;
rx ¼ 0:05, and vb ¼ 657:6. The static peak is the same as that shown in

Fig. 8 except the latter uses a linear rather than a logarithmic scale.
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kr ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðvb=vwpÞ þ ðvb=vwpÞ2

q
; (14)

where kr is the Doppler-shifted wavenumber. By using the
parameters from our solution to the TDSE for the parallel
and anti-parallel cases in Eq. (14), we find a Bragg peak shift
to kr¼ 658 in the parallel case and kr¼ 542 in the anti-
parallel case, in excellent agreement with the results shown
in Fig. 9.

The Doppler effect for matter waves has been verified in
numerous circumstances. It is an essential part of the opera-
tion of a neutron backscattering spectrometer in which
neutrons are back-reflected from an oscillating crystal mono-
chromator.27 Neutrons of different wavenumbers satisfy the
Bragg condition at different times corresponding to the crys-
tal velocity. Thus, it is possible to sweep through a number
of different neutron energies by recording the time at which
a neutron reflects from the monochromator. A numerical
example is provided in Appendix D.

Because a moving potential yields a distinct shift in the
Bragg peak based on its direction with respect to the wave
packet’s direction, we expect that a potential composed of
two equal but oppositely moving waves will split the static
reflection peak, with some portion of the peak reflected to
higher wavenumbers and some to lower wavenumbers.

To test the hypothesis that a superposition of two traveling
waves on a potential will split the static Bragg peak reflec-
tion, we use the potential Vðx� x1; tÞ from which we scat-
tered wave packets of different incident wavenumbers, k0:

Vðn; tÞ ¼
V0½1þ cosðxtÞ sinðQlpnÞ�; 0 � n < w

0; otherwise:

(

(15)

The amplitude of the sinusoid oscillates in time as a standing
wave, which is equivalent to two opposing traveling waves.

The following parameters for the potential were used in
our computations: V0¼ 5� 103, x ¼ 69167; Qlp ¼ 1200;
w ¼ 11ð2p=QlpÞ, and x1¼ 0.1. The wave packet width
parameter was rx ¼ 0:05. The resulting reflectivity from this
potential as determined using this wave packet scattering
technique is shown in Fig. 10. The resulting scattering seen
in Fig. 10 illustrates the expected splitting. In the static case,
the Bragg peak appears at a wavenumber k0¼ 606. The
Doppler equation predicts that the shifted peaks occur at
k¼ k0 6 58, and as can be seen from Fig. 10 the agreement
with the prediction is excellent.

The phenomenon of Doppler-shifted peaks arising from
reflection from potential oscillations has been observed
experimentally. Hamilton and Klein measured the neutrons
reflected from a surface acoustic wave on a quartz crystal.28

The surface acoustic waves were generated on the quartz by
placing periodically-spaced transducers on the surface
(through photolithography) and driving them at a frequency
of 34.5 MHz, resulting in a traveling wave with wavelength
k ¼ 91:5 lm and amplitude of 13.5 Å. Although the surface
acoustic waves were traveling waves in the plane of the sub-
strate, they locally present a standing wave perpendicular to
the surface, accessible via the component of the reflected
beam perpendicular to the surface. Thus, their experimental
situation is comparable to the one we consider. Their meas-
urements showed that the component of the reflected neu-
trons perpendicular to the surface results in a diffraction

pattern. When there was no surface acoustic wave present,
there was no diffraction pattern. When a surface acoustic
wave is present, the standing wave creates the time-
dependent “diffraction” grating and results in two diffraction
peaks. Our numerical computations of wave packets reflect-
ing from a traveling wave potential are consistent with these
neutron experiments.

IV. CONCLUSIONS

Although numerical solutions of the TDSE have been
used for many years to explore the reflection and transmis-
sion properties of potential barriers of varying complexity,
there has not been as extensive an application of these
techniques to time-varying barriers. The use of absorbing
boundary conditions coupled with “measurements” of
probability current at two distinct locations permit rela-
tively small integration domains for solving the TDSE,
thus making estimates of reflectivity and transmission
probabilities easily accessible with modest computational
resources. We discussed applications of the technique to
several time-varying potentials in which the reflection
probability was probed by examining the differences of the
reflection probability from the static barrier case. In each
of the systems, the reflection probability was correlated
with inelastic processes in which the wave packets gain
and/or lose energy from interacting with the barrier. The
phenomena observed in these computations are compara-
ble to non-stationary phenomena observed in many types
of neutron scattering experiments with vibrating mirrors
and moving diffraction gratings, as described, for example,
in Ref. 10.

V. SUGGESTED PROBLEMS

1. Show that if we write the wavefunction satisfying the
TDSE explicitly as wðx; tÞ ¼ Rðx; tÞ þ iIðx; tÞ where R(x,t)

Fig. 10. Comparison of the reflectivity from a static locally-periodic poten-

tial (dashed curve) to that of a locally-periodic potential in which the ampli-

tude oscillates periodically in time (solid curve). There is a single Bragg

peak evident in the static case, which is expected based on the spatial perio-

dicity of the potential. For the case in which the amplitude oscillates in time,

the Bragg peak splits into two parts equally spaced on either side of the peak

corresponding to the static case. The gray vertical lines through the split

peaks denote the expected peak locations based on the Doppler shift. The pa-

rameters of the calculation are given in the text.
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and I(x,t) are real-valued functions, the following two
coupled partial differential equations must be satisfied:
_Rðx; tÞ ¼ ��hI00=2mþ VI=�h and _Iðx; tÞ ¼ �hR00=2m �VR=�h,

where f 0 � @f=@x.
2. Use the result from Problem 1, but for the dimensionless

TDSE ð�h ¼ m ¼ 1Þ, and the central difference approxi-
mation for a derivative of a function to derive Eqs. (B1)
and (B2). Hint: You will need to assume that R is updated
in time before I to match Eqs. (B1) and (B2). Recall
that the central difference approximation for a derivative
of a function is given by @f=@x ’ ½f ðxþ dx=2Þ
� f ðx� dx=2Þ�=dx.

3. Show that the dispersion relation at the right-most bound-

ary for an incident plane wave wðx; tÞ ¼ eiðkx�xtÞ yields no

reflected component if k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� VÞ

p
, where V is eval-

uated at the boundary. Hint: In general, the valid disper-

sion relations for the TDSE are k ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� VÞ

p
, but

we purposefully neglected solutions with negative wave-
numbers. Why?

4. (a) Use the construction in Fig. 11 to derive the expres-
sions for g1 and g2 in Eqs. (B4) and (B5) as functions of
a1 and a2. (b) Use the plane-wave solution to the
free-particle (V¼ 0) TDSE wðx; tÞ ¼ eiðkx�xtÞ to show that
Eq. (B6) corresponds to Eq. (B3).

5. Show that if wðx; tÞ ¼ Rðx; tÞ þ iIðx; tÞ satisfies Eq. (B6),
then Eqs. (B7) and (B8) must be satisfied.

6. Show that if wðx; tÞ ¼ Rðx; tÞ þ iIðx; tÞ, then the probabil-
ity current can be written as jðx; tÞ ¼ �hðRI0 � IR0Þ=m.
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APPENDIX A: SCALING THE SCHR €ODINGER

EQUATION

It is straightforward to move between the dimensionless
TDSE

i
@w
@t
¼ � 1

2

@2w
@x2
þ Vðx; tÞwðx; tÞ; (A1)

with dimensionless position and time increments Dx and Dt,
and its form with dimensions D~x and D~t

i�h
@w
@~t
¼ � �h2

2m

@2w

@~x2
þ ~Vð~x;~tÞwð~x;~tÞ: (A2)

The connection is established using the relations D~x ¼
ð�h=

ffiffiffiffiffiffi
ma
p

ÞDx and D~t ¼ ð�h=aÞDt. Selecting the free parameter
a permits us to specify the scale of one of the variables. For
example, if we use the mass of the neutron mn¼ 939.6
MeV/c2, specify the spatial increment as Dx ¼ 1 and D~x
¼ 1500 Å, then the time increment corresponding to Dt ¼ 1

is D~t ¼ 0:36 ls. This choice implies that for k¼ 400, ~k

¼ 0:27 Å
�1

or ~k ¼ 2p=~k ¼ 23:5 Å. In addition, the potential

scales as ~V ¼ aV, so that a barrier height V0¼ 4� 105 corre-

sponds to a height of ~V0 ¼ 0:74 meV.

APPENDIX B: NUMERICAL SOLUTION OF THE

SCHR €ODINGER EQUATION WITH ABSORBING

BOUNDARY CONDITIONS

The solution of the dimensionless Schr€odinger equation is
performed using the finite-difference time-domain approach
of Visscher,17 augmented by boundary conditions as
discussed by Shibata.20 Space is discretized over M points
via xm ¼ mDx, where m ¼ 0; 1;…; ðM � 1Þ. Time is discre-
tized, but the real and imaginary components of the wave-
function are evaluated at time steps that differ by Dt=2.
The real and imaginary components Rm,n and Im,n

(where wm;n ¼ Rm;n þ i Im;n) are approximations such that
Rm;n ¼ RðmDx; nDtÞ and Im;n ¼ IðmDx; ðnþ 1=2ÞDtÞ. The
wavefunction is updated at all points in the spatial mesh
except at the boundaries using the two-step sequence:

Rm;nþ1 ¼ Rm;n þ
1

2

Dt

ðDxÞ2
2Im;n � Imþ1;n � Im�1;n½ �

þ Dt Vm;n Im;n; (B1)

Im;nþ1 ¼ Im;n �
1

2

Dt

ðDxÞ2
2Rm;nþ1 � Rmþ1;nþ1½

� Rm�1;nþ1� � Dt Vm;nþ1 Rm;nþ1: (B2)

The values of the real and imaginary components at the
boundaries, R0;n; RðM�1Þ;n; I0;n, and IðM�1Þ;n, are obtained by

imposing the absorbing boundary conditions. The absorbing
boundary conditions take the form of a set of partial differen-
tial equations imposed at the boundaries that represent a spe-
cific dispersion relation designed to annihilate incoming
plane waves. For a plane wave moving toward the right

boundary wðx; tÞ ¼ eiðkx�xtÞ, the following dispersion relation
imposed at that boundary ensures that the wave will be anni-

hilated: k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� VÞ

p
(see Problem 3). For a left moving

wave, the following dispersion relation annihilates the

incoming wave: k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� VÞ

p
. Neither of these disper-

sion relations can be converted into a differential equation so
Shibata made the following linear approximation:

k ¼ g1ðx� VÞ þ g2; (B3)

with

g1 ¼ 6

ffiffiffiffiffiffiffi
2a2

p
�

ffiffiffiffiffiffiffi
2a1

p

a2 � a1

(B4)

Fig. 11. Schematic representation showing Shibata’s linear approximation to

the nonlinear dispersion relation for the Schr€odinger equation.
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g2 ¼ 6
a2

ffiffiffiffiffiffiffi
2a1

p
� a1

ffiffiffiffiffiffiffi
2a2

p

a2 � a1

: (B5)

The 6 corresponds to right- and left-moving waves, respec-
tively. This approximation is illustrated in Fig. 11.

To specify g1 and g2 in Eqs. (B4) and (B5) we need to
select a1 and a2. This choice is straightforward because we
can make the selection based on the energy of the initial
wavefunction. For Gaussian wave packets with a central
wavenumber, k0, we chose a1 and a2 so that they bracket the
energy: a1 < k2

0=2 < a2. This choice was made automati-
cally by extracting the width of the peak of the momentum
distribution for the initial Gaussian wave packet (full-width
at half maximum) and selecting values of a1 and a2 corre-
sponding to the width of the momentum distribution.

Converting Eq. (B3) into a partial differential equation
yields (see Problem 4)

i _w ¼ �i
1

g1

@

@x
þ V � g2

g1

� �
w: (B6)

The corresponding coupled partial differential equations for
the real and imaginary parts of the wavefunction are

_R ¼ � 1

g1

@R

@x
þ V � g2

g1

� �
I (B7)

_I ¼ � 1

g1

@I

@x
� V � g2

g1

� �
R: (B8)

Equations (B7) and (B8) can be converted to a set of coupled
finite-difference time-domain equations. At the left boundary
(m¼ 0), the result is

R0;nþ1¼R0;nþR1;n�R1;nþ1�
2

g1

Dt

Dx
ðR1;n�R0;nÞ

þ V0;n�
g2

g1

� �
I0;nþ I1;nð ÞDt; (B9)

I0;nþ1 ¼ I0;n þ I1;n � I1;nþ1 þ
2

g1

Dt

Dx
ðI1;n � I0;nÞ

� V0;nþ1 �
g2

g1

� �
R0;n þ R1;nð ÞDt: (B10)

At the right boundary (m¼M� 1), the result is

RM�1;nþ1 ¼RM�1;n þ RM�2;n � RM�2;nþ1

� 2

g1

Dt

Dx
RM�1;n � RM�2;nð Þ

þ VM�1;n �
g2

g1

� �
IM�1;n þ IM�2;nð ÞDt; (B11)

IM�1;nþ1 ¼ IM�1;n þ IM�2;n � IM�2;nþ1

þ 2

g1

Dt

Dx
ðIM�1;n � IM�2;nÞ

� VM�1;nþ1 �
g2

g1

� �
RM�1;n þ RM�2;nð ÞDt:

(B12)

Equations (B9)–(B12) are updated immediately after the
updates are made using Eqs. (B1) and (B2). To ensure that
the solutions are stable,17 we set Dt=2ðDxÞ2 equal to a con-
stant less than 1. In all cases, our solutions were stable for a
constant of 0.075.

APPENDIX C: PROBABILITY CURRENT AND

TRANSMISSION PROBABILITY

It is straightforward to show that the transmission proba-
bility of a wave packet that has crossed a spatially bounded
region with a potential can be found by integrating the prob-
ability current at a point beyond that region for all times, as
stated in Eq. (6). We use the scattering geometry shown in
Fig. 1 but assume that the computational boundaries expand
from 0 � x � L to �1 < x <1.

Conservation of probability in one dimension is given by

@P

@t
þ @j

@x
¼ 0; (C1)

where Pðx; tÞ ¼ jwðx; tÞj2 and j(x,t) is given by Eq. (7).13 Our
“detector” for transmitted current is at x¼ xt. We assume
that the wave packet moves from the region x < xt so that
jðx > xt; tÞ ¼ 0 for t � 0. For t � 0, the wave packet crosses
the boundary x¼ xt.

We next integrate Eq. (C1) over the region x 2 ½xt;1Þ and
from the time that the wave packet starts to move across the
boundary x¼ xt at t¼ 0:

0 ¼
ðt

0

dt0
ð1

xt

dx
@P

@t0
þ
ðt

0

dt0
ð1

xt

dx
@j

@x

¼
ð1

xt

dx Pðx; t0Þ
����
t

t0¼0

þ
ðt

0

dt0jðx; t0Þ
����
1

x¼xt

: (C2)

We haveð1
xt

dx Pðx; 0Þ ¼ 0; (C3)

because the wave packet is not in the region x 2 ½xt;1Þ prior
to t¼ 0. Also, because wðx; tÞ ! 0 as x! 61, we have
jðx; tÞ ! 0 as x! 61, which givesðt

0

dt0 jðxt; t
0Þ ¼

ð1
xt

dx Pðx; tÞ: (C4)

If we let the upper bound on the time integral go to infinity,
the spatial integral of P(x,t) over the region x > xt is the
transmission probability T. Therefore, we haveð1

0

dt0 jðxt; t
0Þ ¼ T; (C5)

which is the desired result. A similar argument can be used
to show thatð1

0

dt0 jðxr; t
0Þ ¼ �R: (C6)

APPENDIX D: DERIVATION OF THE DOPPLER

SHIFT FOR MATTER WAVES IN

BACKSCATTERING GEOMETRY

The Bragg condition for a matter wave incident on a sta-
tionary lattice with lattice spacing d is

k0 ¼ 2d sin h; (D1)

where k0 is the wavelength of the incident matter wave and 2h
is the scattering angle. Because Q ¼ 2p=d and k0 ¼ 2p=k0,
the Bragg condition can be written as

150 Am. J. Phys., Vol. 82, No. 2, February 2014 Robert M. Dimeo 150

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.6.223.64 On: Wed, 22 Jan 2014 21:05:57



Q ¼ 2k0 sin h: (D2)

In backscattering geometry, 2h ¼ p so that k0 ¼ 2d and
Q¼ 2k0. The speed of the incident matter wave is given by

v0 ¼
h

mk0

¼ h

2md
; (D3)

and its energy is

E0 ¼
h2

8md2
: (D4)

The shift in energy of the matter wave reflected from the
moving lattice is found via DE ¼ EV � E0, where E0 is the
energy of the reflected matter wave when the crystal is at
rest [see Eq. (D4)], and EV is the energy of the matter wave
that has been reflected from the moving lattice. To determine
EV, we use the reciprocal lattice construction due to Buras
and Giebultowicz,29 shown in Fig. 12, where the triangle
ABC illustrates the scattering geometry from the moving
lattice in the laboratory (stationary) frame and the triangle
ABD shows the scattering geometry in the moving frame.
The incident and reflected matter wave velocities are denoted
v0 and vr, respectively; the corresponding velocities in the
moving frame are u0 and ur. From Fig. 12, we see that the
initial and final velocities in the laboratory frame satisfy
the condition

vr ¼ v0 þ
�hQ

m
: (D5)

If the lattice were stationary, then the triangle ABC would
be an isosceles triangle with v0¼ vr and hi ¼ hr, and would
be equivalent to triangle ABD. However, Fig. 12 illustrates
that the effect of the lattice moving with velocity V is a
translation and distortion of the scattering triangle ABC in
the laboratory frame. The scattering triangle ABD in the
moving frame is an isosceles triangle with u0¼ur. We can
calculate the length of the vector AB (or �hQ=m). Because
v0¼ h/2md it is easy to show that �hQ=m ¼ 2v0. Because the
dashed line perpendicular to AB that terminates at D bisects
AB, half of the length of AB is v0.

With this information and the geometry in Fig. 12, we can
calculate 2d sinhr to be

2d sin hr ¼ 2d
v0 þ V

vr

� �
¼ k0 v0

vr
ð1þ V=v0Þ

¼ krð1þ V=v0Þ; (D6)

where we used the relation v0k0 ¼ h=m ¼ vrkr in the last
step. Rewriting Eq. (D6) (using 2hr ¼ p) yields

kr ¼
2d

1þ V=v0

: (D7)

The energy of the reflected matter wave can be determined
using the expressions:

EV¼
p2

r

2m
¼ h2

2mk2
r

¼ h2

8md2
1þ V

v0

� �2

¼E0 1þ V

v0

� �2

: (D8)

Finally, we can compute the energy shift

DE ¼ EV � E0 ¼ E0 1þ V

v0

� �2

� E0

¼ E0 2
V

v0

� �
þ V

v0

� �2
" #

: (D9)

The substitution V¼ vb and v0¼ vwp yields Eq. (13).
A straightforward application of the Doppler energy shift

equation is the Doppler monochromator system for the NIST
High Flux Backscattering Spectrometer.27 The monochroma-
tor is tiled with Si wafers and oscillates sinusoidally in time
with an amplitude A¼ 4.5 cm at an adjustable frequency.
Neutrons undergo Bragg scattering in the backscattering
geometry from the (111) reflection of Si. The lattice spacing
for this reflection is d¼ 3.135 Å. Thus neutrons of wavelength
k0 ¼ 2d ¼ 6:271 Å are reflected when the monochromator is
stationary. The speed of a neutron with this wavelength is
v0¼ 631.39 m/s and the energy is E0¼ 2080.11 leV. The
energy of the neutrons reflected from the oscillating mono-
chromator is time-dependent. If we substitute one of the oper-
ating frequencies of the NIST Doppler system ( f¼ 18 Hz),
the result is

DEðtÞ ¼ E0

2xA cos xt

v0

þ xA cos xt

v0

� �2
" #

(D10a)

¼ 33:5 cosð113:1tÞ þ 0:14 cos2ð113:1tÞ: (D10b)

Thus, the dynamic range of the spectrometer at this operating
frequency is about 633.6 leV.
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